Термин «электроразрядный лазер» более известен в сочетании с газовой средой – электроразрядные газовые лазеры довольно распространены. Принцип их работы, условно говоря, заключается в следующем: напряжение, прикладываемое к газовой трубке, ускоряет электроны, активизируя процесс ионизации, в результате возникают условия для оптических переходов, которые способствуют усилению, а потом генерации лазерного излучения. Что касается полупроводников, то известны «стримерные» полупроводниковые лазеры, возбуждаемые наносекундными (10-7-10-8 с) импульсами высокого напряжения. Эти лазеры содержат генератор высоковольтных импульсов, один электрод которого подсоединен к полупроводниковой пластине, помещенной в жидкий диэлектрик, а второй удален на значительное расстояние для предотвращения пробоя полупроводниковой пластины. Существенным недостатком таких лазеров является возникновение генерации лазерного излучения вдоль определенных кристаллографических направлений и малый диаметр генерирующей области (до десятка микрон), что связанно с распределением электрических полей в кристалле и ограничивает мощность, увеличивает расходимость излучения и не позволяет управлять числом и местом положения генерирующих областей.
Сотрудники ФИАН и Института Электрофизики УрО РАН смогли устранить перечисленные недостатки, для чего существенно изменили конструкцию лазера и, в частности, применили возбуждение пикосекундными импульсами.
«Применение пикосекундных импульсов позволяет увеличить пробивную прочность, сблизить электроды, между которыми расположена полупроводниковая пластина и обеспечить условия, в которых разряд распространяется по направлению силовых линий электрического поля. При этом отпадает необходимость помещать кристалл и электрод в жидкую диэлектрическую среду, и появляются дополнительные возможности ионизации полупроводника излучением разряда и электронным пучком, образующимися в разрядном промежутке при приложении высоковольтных пикосекундных импульсов», – рассказывает руководитель разработки доктор технических наук Александр Насибов.
Под действием пикосекундных импульсов электрического поля и электронного пучка в результате ударной ионизации, туннельного и фотоэффекта образуется плотная электронно-дырочная плазма, в которой возникают условия для усиления и генерации лазерного излучения.
«Работа широко известных полупроводниковые лазеров основана на p-n переходах, вы пропускаете через него ток и за счет инжекции носителей получаете излучение. В полупроводниковом электроразрядном лазере используется монокристалл, то есть p-n перехода нет, работает другой принцип, больше похожий на то, что происходит в газовых лазерах. Вы прикладываете напряжение, напряженность электрического поля возрастает, электроны разгоняются, происходит ионизация атомов или ионов, в зависимости от того, какой кристалл, и в кристалле образуется плазма. А в электронно-дырочной плазме при определенной плотности электронно-дырочных пар возможно усиление и генерация света. Вот эту идею мы и реализуем», – рассказывает Александр Насибов.
В зависимости от приложенного импульсного напряжения и длительности импульсов (десятки-сотни пикосекунд) лазер может излучать световые импульсы мощностью от десятков до сотен киловатт с длиной волны, определяемой шириной запрещенной зоны полупроводника – от 300 нм до 3 мкм. Активный элемент лазера – полупроводниковая пластина – может быть изготовлена из двойного или тройного прямозонного полупроводникового соединения А2В6 (ZnS, ZnSe. CdS, CdSe, ZnSSe, ZnCdS, CdSSe) или А3В5 (GaAs. GaN, GaAlN, GaAlAs, АlN, InN и т.п.).
Предусматривается применение лазера в устройствах оптоэлектроники, оптической связи, при исследовании быстропротекающих процессов в биологических тканях и в регистрирующих приборах.
"